Jason Mraz - I'm Yours

Thursday, 16 January 2014

MICROPROCESSOR

 MICROPROCESSOR


1. Fungsi processor adalah :
  • Mengambil instruksi dan data dari memori (Fetching)
  • Memindah data dari dan ke memori.
  • Mengirim sinyal kendali dan melayani sinyal interupsi.
  • Menyediakan pewaktuan untuk siklus kerja sistem mikroprosesor. (Clocking)
  • Mengerjakan fungsi – fungsi operasi logika dan aritmetika.
contoh alat-alat yang menggunakan processor : Handphone, Komputer, Mesin Cuci, PlayStation(Game Player), dll.


2. Blok diagram cara kerja processor 



Gambar 1. Blok Diagram cara kerja processor




Prinsip kerjanya adalah mengolah suatu data masukan, yang kemudian hasil olahan tersebut akan menghasilkan keluaran yang dikehendaki. Proses pengolahan datanya dapat difungsikan sesuai dengan instruksi yang diprogramkan . Masing – masing mikroprosesor memiliki bahasa pemrograman yang berbeda-beda. Namun secara prinsip, dasar dari tiap mikroprosesor adalah sama. Tiap Mikroprosesor memiliki satu bus data, satu bus alamat dan satu bus kendali. Dalam mikroprosesor terdapat suatu unit untuk mengerjakan fungsi – fungsi logika dan aritmetika, register – register untuk menyimpan data sementara dan unit pengendalian .
Bus data terdiri biasanya 4, 8, 16 atau 32 jalur (bit), 64 bit, tergantung dari jenis mikroprosesornya. Bus data berfungsi memuat data dari dan ke mikroprosesor. Arah panah menunjukkan arah data dikirim/diterima.
Bus alamat merupakan bus yang berisi alamat – alamat yang datanya akan dikirim / diterima oleh mikroprosesor.
Bus kendali digunakan untuk mensinkronkan kerja antara mikroprosesor dengan dunia luar sistem. Pada beberapa aplikasi ada yang disebut dengan istilah jabat tangan, seperti misalnya pada penerapan hubungan dengan pencetak (printer).
Dalam sistem kerjanya mikroprosesor didukung oleh unit memori (untuk menyimpan program tetap/sementara dan menyimpan data), unit masukan dan keluaran yang berfungsi sebagai antar muka dengan dunia luar. Catu daya, rangkaian pembangkit detak (clock), rangkaian pengawasandi(address decoder), penyangga (buffer) dan penahan (latch) juga diperlukan mikroprosesor untuk mendukung operasi kerja sebagai satu rangkaian yang solid.

1. Unit Pemroses Pusat (CPU : Central Processing Unit)
Mikroprosesor berfungsi sebagai unit yang mengendalikan seluruh kerja system mikroprosesor. Fungsi – fungsi mikroprosesor adalah sebagai berikut :
1. Mengambil instruksi dan data dari memori.
2. Memindah data dari dan ke memori.
3. Mengirim sinyal kendali dan melayani sinyal interupsi.
4. menyediakan pewaktuan untuk siklus kerja sistem mikroprosesor.
5. Mengerjakan fungsi – fungsi operasi logika dan aritmetika.
Dalam pelaksanaan fungsi – fungsi tersebut, bagian – bagian mikroprosesor yang mengerjakan adalah : Pengendalian dan Pewaktuan (control and Timing), ALU (Arithmetic and Logical Unit) dan Register.

a. Pewaktuan dan Pengendalian
Bagian pewaktuan dan pengendalian memiliki fungsi utama untuk mengambil dan mendekodekan instruksi dari memori program dan membangkitkan sinyal kendali yang diperlukan oleh bagian lain dari mikroprosesor untuk melaksanakan instruksi tersebut. Pada bagian pengendalian mengirimkan sinyal kendali eksternal untuk dikirim ke elemen system mikroprosesor yang lain. Bagian pengendalian juga berfungsi untuk menerima sinyal kendali dari elemen lain dalam sistem mikroprosesor.

b. ALU (Arithmetic Logical Unit)
Bagian mikroprosesor yang berfungsi mengerjakan perintah – perintah logika dan operasi aritmetika adalah ALU. Instruksi dalam operasi ini melibatkan satu atau dua operand. Operasi ALU menghasilkan juga sinyal status yang dikirim ke register, yaitu sinyal untuk mengubah status bit – bit flag sesuai hasil operasi suatu instruksi.

c. Register
Fungsi register digunakan untuk menyimpan data, alamat, kode instruksi dan bit status berbagai operasi mikroprosesor. Prinsip dari register – register pada berbagai mikroprosesor adalah sama, namun memiliki perbedaan dalam struktur registernya.
2. Memori
Setiap sistem mikroprosesor memiliki memori, guna menyimpan program dan datanya. Mikrokontroler memiliki memori internal baik dari jenis memori ROM maupun RAM. Namun beberapa jenis mikrokontroler tidak memiliki internal ROM, seperti mikrokontroler yang dipakai pada perancangan alat ini.

a. Jenis-jenis Memori 
Memori dalam sistem mikroprosesor digunakan dua jenis memori :
- Memori Tak Mudah Terhapus (non volatile)
- Memori Mudah Terhapus (volatile)

Memori tidak mudah terhapus memiliki karakteristik menyimpan informasi / data dan selamanya informasi tersebut tidak akan hilang walaupun catu daya sistem mikroprosesor dimatikan contoh memori tak mudah terhapus adalah ROM dengan jenis 27256. ROM hanya dapat dibaca. Pengisian informasi dalam ROM dilakukan sekali untuk selamanya. Namun ada jenis ROM yang dapat dihapus dengan menggunakan sinar ultra violet, dan dapat diisi kembali. Jenis ROM itu seperti yang dipakai pada perancangan alat ini. Dua jenis memori ROM yang dapat dihapus dan diprogram kembali oleh pemakai yaitu UV EPROM dan EEPROM. UV PROM dihapus dengan ultra violet dan EEPROM dengan memberikan level tegangan tertentu. Memori mudah terhapus memiliki karakteristik yang terbalik dengan memori tak mudah terhapus.
Memori mudah terhapus dapat menyimpan informasi selama catu daya sistem mikroprosesor belum dimatikan. Informasi akan hilang apabila catu daya memori dimatikan. Memori jenis ini contohnya adalah RAM, yang dapat ditulisi dan dibaca berulang – ulang. Memori RAM digolongkan menjadi dua yaitu : memori statik dan memori dinamik. Pada memori dinamik, informasi disimpan dalam muatan dan muatan akan hilang bila tidak disegarkan, untuk itu diperlukan suatu rangkaian penyegar di luar memori. Memori static tidak memerlukan rangkaian penyegar, sebab informasi pada memori statik disimpan dalam penahan flip-flop.
b. Sistem Kerja Memori
Sistem operasi kerja memori, prinsipnya terdiri dari dua yaitu operasi baca dan operasi tulis. Bila prosesor melakukan perintah baca ke memori maka prosesor mengirimkan alamat data yang akan diakses, kemudian mengirimkan sinyal kendali read (baca) yang memerintahkan pada memori untuk mengeluarkan data pada alamat yang ditunjukkan pada bus data. Operasi tulis yaitu bila prosesor akan menyimpan data, informasi, instruksi atau kode operasi ke memori.
Dalam operasi tulis data, mikroprosesor terlebih dahulu mengirimkan alamat melalui bus alamat ke memori, yang menunjukkan lokasi alamat data pada memori yang akan ditulis. Selanjutnya sinyal write (tulis) dikirimkan yang memberikan perintah kepada memori untuk menyediakan tempat pada memori untuk data yang ada pada bus data dengan alamat sesuai yang ditunjukkan pada bus alamat. Siklus kerja memori diperlihatkan pada gambar berikut :

Gambar 2. Diagram siklus waktu operasi baca dari memori

Penjelasan gambar 2 adalah sebagai berikut :
  • Mikroprosesor menempatkan alamat data yang akan dibaca pada bus alamat.
  • Mikroprosesor memberikan pulsa sinyal kendali baca (aktif rendah).
  • Saat sinyal kendali aktif rendah, data pada bus data siap diambil / dibaca.
  • Data sahih siap dibaca oleh mikroprosesor
  • Prosesor mengambil data dari bus data
  • Sinyal kendali kembali pada level tinggi.



Gambar 3. Diagram siklus waktu operasi tulis pada memori
Penjelasan dari gambar 3 adalah sebagai berikut :
·         Mikroprosesor memberikan data yang akan ditulis pada memori pada bus data.
·        Mikroprosesor selanjutnya memberikan alamat lokasi data pada memori untuk data yang akan ditulis pada memori ke bus alamat.
·         Prosesor kemudian memberikan sinyal kendali tulis (aktif rendah) .
·       Saat sinyal kendali pada posisi rendah, data otomatis ditulis pada memori dengan alamat lokasi pada alamat yang ditunjukkan bus alamat.
·         Sinyal kendali kembali ke posisi level tinggi.
·         Memori siap menerima instruksi selanjutnya.


3. Unit Masukan dan Keluaran
Perantara antara mikroprosesor dengan dunia luar merupakan tugas dari unit masukan dan keluaran pada suatu sistem mikroprosesor. Tanpa unit masukan dan keluaran maka data yang diolah hanya berputar – putar dalam sistem mikroprosesor, tanpa ada keluaran yang dapat diterima lingkungan luar sistem mikroprosesor.
Teknik masukan dan keluaran pada sistem mikroprosesor dapat dibedakan menjadi dua sistem yaitu :
1). Sistem Paralel
Data masukan / keluaran dikirimkan dalam bentuk delapan bit paralel.
2). Sistem Serial
Data masukan/keluaran dikirim secara bit per bit berurutan melalui satu jalur.


3. Blok Diagram Cara Kerja Komputer  dan Contoh perangkat lunaknya.
Cara kerja sebuah komputer dapat dideskripsikan secara sederhana dengandiagram blok sebagai berikut :
1. Input Device
Input device adalah peralatan yang kita gunakan untuk memasukkan data atau perintah ke dalam komputer. 
Contoh : 
Keyboard


Scanner
Mouse



Trackball




2. Output Device
Output  device  adalah  peralatan  yang  kita  gunakan  untuk  melihat hasil pengolahan data atau perintah yang dilakukan oleh komputer.
Contoh :
Monitor
Printer



Plotter
Speaker
3.   I/O Ports

I/O   adalah   Input/Output.   Bagian   ini   digunakan   untuk   menerima   ataupun mengirim data keluar sistem. Peralatan-peralatan input dan outputseperti yang tercantum di atas terhubung melalui port ini.



4.   Central Processing Unit

Central Processing Unit (CPU) merupakan otak sistem komputer. CPUmemilikidua bagian fungsi operasional yaitu Arithmetical Logical Unit (ALU) sebagai pusat pengolah data serta bagian Control Unit (CU) digunakan untukmengontrol kerja komputer. Biasa disebut dengan nama processor saja.


5.   Memory

Bagian ini terdiri dari internal memory yaitu berupa RAM (Random Access Memory) dan ROM (Read Only Memory) serta eksternal memory yaitu berbagaimacam disk seperti hard disk, floppy disk dan optical disc.


6.   Data Bus

Data bus adalah jalur-jalur perpindahan data antarmodul dalam sistemkomputer. Biasanya terdiri dari 8, 16 , 32 atau 64 jalur data yang paralel. Karena pada suatu saat  tertentu  masing-masing  saluran  hanya  dapat  membaw 1 bit  data,  maka jumlah saluran menentukan jumlah bit yang dapat ditransferpada suatu saat. Lebar data bus ini menentukan kinerja sistem secarakeseluruhan. Sifatnya bidirectional, misalnya   CPU dapat membaca darimemory atau port dan dapat juga mengirim ke memory atau port.


7.   Address Bus
Address Bus digunakan  untuk menandakan lokasi sumber ataupun tujuan pada proses transfer data. Pada jalur ini CPU akan mengirimkan alamat memory yang akan ditulis atau dibaca. Address Bus biasanya terdiri atas 16,  20, 24  atau 32 jalur  paralel.  Lebar  Address  Bus  menentukan  kapasitas  memory  maksimum sistem.Sebagai contoh bila CPU mempunyai Address Bus 20 bit maka CPU dapat mengalamatkan 220 atau 1048576 alamat (1 MB).



8.   Control Bus

Control Bus digunakan untuk mengontrol penggunaan serta akses ke DataBus dan Address Bus Control Bus terdiri dari 4 sampai 10 jalur paralel. CPUakan mengirimkan sinyal pada control bus ini bila akan meng-enable sebuahalamat yang ditunjuk, baik itu memory atau I/O port.

4. Fungsi dari :
a. Segment unit adalah skema manajemen memori dengan cara membagi memori menjadi segmen-segmen. Dengan demikian, sebuah program dibagi menjadi segmen-segmen. Segmen adalah sebuah unit logis , yaitu unit yang terdiri dari beberapa bagian yang berjenis yang sama.

b. Bus Interface adalah untuk meindahkan data antar bagian - bagian dalam sistem komputer. Data dipindahkan dari piranti masukan ke CPU, CPU ke memori, atau dari memori ke piranti keluaran. 

5. Tahap - Tahap Pembuatan Processor
Pasir, seperempat bagiannya terbentuk dari silikon, yakni unsur kimia yang paling berlimpah di muka bumi ini setelah oksigen. Pasir (terutama quartz), mempunyai persentase silikon yang tinggi di dalam bentuk Silicon Dioxide (SiO2) dan pasir merupakan bahan pokok untuk memproduksi semiconductor.
Setelah memperoleh mentahan dari pasir dan memisahkan silikonnya, materiil yang kelebihan dibuang. Lalu, silikon dimurnikan secara bertahap hingga mencapai kualitas ‘semiconductor manufacturing quality’, atau biasa disebut ‘electronic grade silicon’. Pemurnian ini menghasilkan sesuatu yang sangat dahsyat dimana ‘electronic grade silicon’ hanya boleh memiliki satu ‘alien atom’ di tiap satu milyar atom silikon. Setelah tahap pemurnian silikon selesai, silikon memasuki fase peleburan. Dari gambar di atas, kita bisa melihat bagaimana kristal yang berukuran besar muncul dari silikon yang dileburkan. Hasilnya adalah kristal tunggal yang disebut ‘Ingot’.


Kristal tunggal ‘Ingot’ ini terbentuk dari ‘electronic grade silicon’. Besar satu buah ‘Ingot’ kira-kira 100 Kilogram atau 220 pounds, dan memiliki tingkat kemurnian silikon hingga 99,9999 persen.
Setelah itu, ‘Ingot’ memasuki tahap pengirisan. ‘Ingot’ di iris tipis hingga menghasilkan ‘silicon discs’, yang disebut dengan ‘Wafers’. Beberapa ‘Ingot’ dapat berdiri hingga 5 kaki. ‘Ingot’ juga memiliki ukuran diameter yang berbeda tergantung seberapa besar ukuran ‘Wafers’ yang diperlukan. CPU jaman sekarang biasanya membutuhkan ‘Wafers’ dengan ukuran 300 mm.


Setelah diiris, ‘Wafers’ dipoles hingga benar-benar mulus sempurna, permukaannya menjadi seperti cermin yang sangat-sangat halus. Kenyataannya, Intel tidak memproduksi sendiri ‘Ingots’ dan ‘Wafers’, melainkan Intel membelinya dari perusahaan ‘third-party’. Processor Intel dengan teknologi 45nm, menggunakan ‘Wafers’ dengan ukuran 300mm (12 inch), sedangkan saat pertama kali Intel membuat Chip, Intel menggunakan ‘Wafers’ dengan ukuran 50mm (2 inch).
Cairan biru seperti yang terlihat pada gambar di atas, adalah ‘Photo Resist’ seperti yang digunakan pada ‘Film’ pada fotografi. ‘Wafers’ diputar dalam tahap ini supaya lapisannya dapat merata halus dan tipis.
Di dalam fase ini, ‘Photo Resist’ disinari cahaya ‘Ultra Violet’. Reaksi kimia yang terjadi dalam proses ini mirip dengan ‘Film’ kamera yang terjadi pada saat menekan shutter.
Daerah paling kuat atau tahan di ‘Wafer’ menjadi fleksibel dan rapuh akibat efek dari sinar ‘Ultra Violet’. Pencahayaan menjadi berhasil dengan menggunakan pelindung yang berfungsi seperti stensil. Saat disinari sinar ‘Ultra Violet’, lapisan pelindung membuat pola sirkuit. Di dalam pembuatan Processor, sangat penting dan utama untuk mengulangi proses ini berulang-ulang hingga lapisan-lapisannya berada di atas lapisan bawahnya, begitu seterusnya.
Lensa di tengah berfungsi untuk mengecilkan cahaya menjadi sebuah fokus yang berukuran kecil.
Dari gambar di atas, kita dapat gambaran bagaimana jika satu buah ‘Transistor’ kita lihat dengan mata telanjang. Transistor berfungsi seperti saklar, mengendalikan aliran arus listrik di dalam ‘Chip’ komputer. Peneliti Intel telah mengembangkan transistor menjadi sangat kecil sehingga sekitar 30 juta ‘Transistor’ dapat menancap di ujung ‘Pin’.
Setelah disinari sinar ‘Ultra Violet’, bidang ‘Photo Resist’ benar-benar hancur lebur. Gambar di atas menampakan pola ‘Photo Resist’ yang tercipta dari lapisan pelindung. Pola ini merupakan awal dari ‘transistors’, ‘interconnects’, dan hal yang berhubungan dengan listrik berawal dari sini.


Meskipun bidangnya hancur, lapisan ‘Photo Resist’ masih melindungi materiil ‘Wafer’ sehingga tidak akan tersketsa. Bagian yang tidak terlindungi akan disketsa dengan bahan kimia.
Setelah tersketsa, lapisan ‘Photo Resist’ diangkat dan bentuk yang diinginkan menjadi tampak.
‘Photo Resist’ kembali digunakan dan disinari dengan sinar ‘Ultra Violet’. ‘Photo Resist’ yang tersinari kemudian dicuci dahulu sebelum melangkah ke tahap selanjutnya, proses pencucian ini dinamakan ‘Ion Doping’, proses dimana partikel ion ditabrakan ke ‘Wafer’, sehingga sifat kimia silikon dirubah, agar CPU dapat mengkontrol arus listrik.
Melalui proses yang dinamakan ‘Ion Implantation’ (bagian dari proses Ion Doping) daerah silikon pada ‘Wafers’ ditembak oleh ion. Ion ditanamkan di silikon supaya merubah daya antar silikon dengan listrik. Ion didorong ke permukaan ‘Wafer’ dengan kecepatan tinggi. Medan listrik melajukan ion dengan kecepatan lebih dari 300,000 Km/jam (sekitar 185,000 mph).

Setelah ion ditanamkan, ‘Photo Resist’ diangkat, dan materiil yang bewarna hijau pada gambar sekarang sudah tertanam ‘Alien Atoms’
Transistor ini sudah hampir selesai. Tiga lubang telah tersketsa di lapisan isolasi (warna ungu kemerahan) yang berada di atas transistor. Tiga lubang ini akan diisi dengan tembaga, yang berfungsi untuk menghubungkan transistor ini dengan transistor lain.
‘Wafers’ memasuki tahap ‘copper sulphate solution’ pada tingkat ini. Ion tembaga disimpan ke dalam transistor melalui proses yang dinamakan ‘Electroplating’. Ion tembaga berjalan dari terminal positif (anode) menuju terminal negatif (cathode).
Ion tembaga telah menjadi lapisan tipis di permukaan ‘Wafers’.


Materiil yang kelebihan dihaluskan, meninggalkan lapisan tembaga yang sangat tipis.
Banyak lapisan logam dibuat untuk saling menghubungkan bermacam-macam transistors. Bagaimana rangkaian hubungan ini disambungkan, itu ditentukan oleh teknik arsitektur dan desain tim yang mengembangkan kemampuan masing-masing processor. Dimana chip komputer terlihat sangat datar, sebenarnya memiliki lebih dari 20 lapisan untuk membuat sirkuit yang kompleks. Jika melihat dengan kaca pembesar, akan melihat jaringan bentuk sirkuit yang rumit, dan transistors yang terlihat futuristik, ‘Multi-Layered Highway System’.
Ini hanya contoh super kecil dari ‘Wafer’ yang akan melalui tahap test kemampuan pertama. Di tahapan ini, sebuah pola test dikirimkan ke tiap-tiap chip, lalu respon dari chip akan dimonitor dan dibandingkan dengan ‘The Right Answer’.


Setelah hasil test menunjukan bahwa ‘Wafer’ lulus, ‘Wafer’ dipotong menjadi sebuah bagian yang disebut ‘Dies’. 
‘Dies’ yang lulus test, akan diikutkan ke tahap selanjutnya yaitu ‘Packaging’. ‘Dies’ yang tidak lulus, dibuang. 


Ini adalah gambar satu ‘Die’, yang tadinya dipotong pada proses sebelumnya. ‘Die’ pada gambar ini adalah ‘Die’ dari Intel Core i7 Processor.


Lapisan bawah, ‘Die’, dan ‘Heatspreader’ dipasang bersama untuk membentuk ‘Processor’. Lapisan hijau yang bawah, digunakan untuk membentuk listrik dan ‘Mechanical Interface’ untuk Processor supaya dapat berinteraksi dengan sistem PC. ‘Heatspreader’ adalah ‘Thermal Interface’ dimana solusi pendinginan diterapkan, sehingga Processor dapat tetap dingin dalam beroperasi.
Selama tes terakhir untuk Processor, Processor di tes karakteristiknya, seperti penggunaan daya dan frekwensi maksimumnya.
Berdasarkan hasil test sebelumnya, Processor dikelompokan dengan Processor yang memiliki kemampuan sama. Proses ini dinamakan dengan ‘Binning’, ‘Binning’ ditentukan dari frekwensi maksimum Processor, kemudian tumpukan Processor dibagi dan dijual sesuai dengan spesifikasi stabilnya.

6. Perbedaaan antara Volatile Memory,Non Volatile Memory dan contohnya.

Memori tidak mudah terhapus ( Non Volatile ) memiliki karakteristik menyimpan informasi / data dan selamanya informasi tersebut tidak akan hilang walaupun catu daya sistem mikroprosesor dimatikan contoh memori tak mudah terhapus adalah ROM dengan jenis 27256. ROM hanya dapat dibaca. Pengisian informasi dalam ROM dilakukan sekali untuk selamanya. Namun ada jenis ROM yang dapat dihapus dengan menggunakan sinar ultra violet, dan dapat diisi kembali. Jenis ROM itu seperti yang dipakai pada perancangan alat ini. Dua jenis memori ROM yang dapat dihapus dan diprogram kembali oleh pemakai yaitu UV EPROM dan EEPROM. UV PROM dihapus dengan ultra violet dan EEPROM dengan memberikan level tegangan tertentu. Memori mudah terhapus memiliki karakteristik yang terbalik dengan memori tak mudah terhapus.
Memori mudah terhapus ( Volatile ) dapat menyimpan informasi selama catu daya sistem mikroprosesor belum dimatikan. Informasi akan hilang apabila catu daya memori dimatikan. Memori jenis ini contohnya adalah RAM, yang dapat ditulisi dan dibaca berulang – ulang. Memori RAM digolongkan menjadi dua yaitu : memori statik dan memori dinamik. Pada memori dinamik, informasi disimpan dalam muatan dan muatan akan hilang bila tidak disegarkan, untuk itu diperlukan suatu rangkaian penyegar di luar memori. Memori static tidak memerlukan rangkaian penyegar, sebab informasi pada memori statik disimpan dalam penahan flip-flop.


7.  a. Wafer 
Wafer adalah bahan dasar dari komponen microsystem. Wafer biasanya berbentuk lempengan tipis berbentuk lingkaran dengan garis disalah satu sisinya. Pada umumnya wafer terbuat dari kristal silicone.
     
     b. Die
Die adalah wafer yang dipotong menjadi sebuah bagian .